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The pure compound, recrystallized from hexane, had 
mp 121-122°: nmr 5 (CCl4) 3.86 (4 H, s), 1.28 (3 H, 
s), 1.17 (9 H, s)0.93 (s, 2 H). 

Further transformation of 14 by catalytic hydrogena-
tion (Pd-on-charcoal, triethylamine), followed by re-
fluxing with 2 N hydrochloric acid in methanol to 
(±)-D-homo-19-nor-testosterone 15, mp 140.5-142°, 
undepressed on admixture with an authentic sample.21 

It is apparent that a-hydroxymethyl ketones can be 
produced regiospecifically in high yields. They should 
prove valuable intermediates in synthesis.22 

(21) G. Stork and J. E. McMurry, / . Amer. Chem. Soc, 89, 5464 
(1967). 

(22) We thank the National Institutes of Health and the National 
Science Foundation for their support of this work. 
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Four-Carbon Carboranes. Synthesis of 
Tetra- C-methyltetracarbadodecaborane(12) and 
Its Metallocarborane Derivatives 

Sir: 

Addition of two electrons to the icosahedral car-
borane C2Bi0Hi2, a filled-shell electronic system, is 
expected to open or otherwise distort the polyhedral 
cage. Several isomeric C2Bi0Hi2

2- ions and proton-
ated C2Bi0Hi3_ analogs are known,1-7 but the only X-
ray determined structure8 is that of a C,C"-diphenyl 
derivative, (C 6 HS) 2 C 2 B 1 0 HI 1 - , which is an icosahedral 
fragment containing a bridging C6H5CH group on the 
edge of the open face. The isoelectronic neutral 
species C4B8Hi2 is unknown, and in fact the only pre­
viously reported carborane having four carbon atoms 
in the same cage is the C4B2H6 system.9-11 We report 
here a new carborane, tetra-C-methyltetracarbadodeca-
borane (12), (CHs)4C4B8H8 (I), a derivative of C4B8H12, 
which exhibits structural dynamics of a type novel to 
carborane chemistry and also functions as a face-bonding 
ligand in metallocarborane formation. Compound I 
is a colorless, air-stable, sublimable crystalline solid, 
mp 138°, which has been obtained in 35-40% yield 
as an adjunct of the synthesis of the red bis(dicarba-
hexaboranyl)cobalt and -iron metallocarboranes [2,3-
(CHs)2C2B4HJ2Co111H and [2,3-(CHs)2C2B4H4J2Fe11H2 

from Na+[2,3-(CH3)2C2B4H5]- and CoCl2 or FeCl2 in 
tetrahydrofuran (THF). The metal complexes per se 
are not directly germane to this report and will be de-
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Figure 1. The 32.1-MHz 11B nmr spectra of I in CCl4 at ambient 
temperature: (a) 3 min after preparation of solution (large peaks 
are BH doublets of isomer A; small peaks in center are due to 
traces of isomer B (S and J values given in text)), (b) same solution 
12 min later (bracketed doublets are due to isomer B; the spectrum 
did not undergo further significant change other than slight increase 
in the area of the B resonances). 

scribed elsewhere. We have determined that I forms 
via decomposition of the metal complexes and does not 
appear to be produced directly from the (CH3)2C2B4H5

-

ion. 
The mass spectrum of I exhibits intense parent-group 

peaks with little cage fragmentation (calcd mass for 
12C8

11B8
1H20+, 204.2310; found, 204.2310); the ir spec­

trum contains strong CH3 and BH stretching bands but 
has no appreciable B-H-B absorptions. The com­
pound is thermally stable, but the isomer which is 
initially evident in solution and presumably exists in 
the solid state (A) undergoes reversible rearrangement 
in solution to a second isomer (B); an essentially sol­
vent-independent equilibrium [B]/[A] ratio of ~0 .5 
(measured from 11B and 1H nmr peak areas) is reached 
within a few minutes at ambient temperature, and there­
after no further noticeable change occurs. The isom-
erization takes place in CCl4, CH2Cl2, C2H5OH, THF, 
CH3CN, CDCl3, and C6H6 and is completely reversible, 
since on evaporation of the solvent followed by redis-
solving, the original nmr spectra (containing only A 
initially) are regenerated. The 11B nmr spectrum of A 
in CCl4 (Figure la) contains four B-H doublets of 
equal area of 5 ~ - 9 . 2 , -~ -8 .4 , +22.4, and 29.5 ppm 
relative to BF3-O(C2Hs)2 (J = 155 ± 20 Hz); the two 
low-field doublets are heavily overlapped but distin­
guishable. On proton decoupling, all doublets collapse 
to singlet resonances. The 11B spectrum of B (see 
Figure lb) contains doublets at 8 +2.4 (J = 150 Hz) 
and +11.0 (148) with a 6:2 area ratio, which also 
collapse to singlets on decoupling; since the area 6 
doublet is asymmetric (Figure lb) and since in any case 
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Figure 2. Possible structure for isomer B, formed by face-to-face 
fusion of two (CHs)2C2B4H4 units. Distortion from regular icosa-
hedral symmetry is suggested by broken lines. 

no reasonable structure would have six equivalent 
borons, this resonance is assumed to arise from super­
position of signals of areas 4 and 2. The 100-MHz 1H 
nmr spectrum of A in CCl4 contains methyl resonances 
of equal area at 5 —1.70 and —1.62 ppm relative to 
(CH3)4Si, while the spectrum of B exhibits methyl peaks 
of equal area at 6 —2.07 and —2.01. 

The 11B and 1H nmr spectra of isomers A and B do 
not exhibit marked temperature dependence from —80 
to +20°, the primary effect on cooling being moderate 
peak broadening at low temperature. On heating the 
solution, the two CH3 peaks in the proton nmr spec­
trum of B coalesce, collapsing at +40° to a singlet 
indicating equivalence of all four methyl groups; the 
proton spectrum of A, however, is basically unchanged 
at +40°, as are the 11B spectra of both A and B. 

Unequivocal structure assignments for isomers A and 
B cannot be given at this time but some reasonable 
inferences can be made. A (CHs)4C4B8H8 cage is not 
expected to be a regular icosahedron (see above); how­
ever, the nmr data do not support a polyhedral-frag­
ment structure like that of the isoelectronic (C6H5)2-
C2BiOHi1

- ion previously described. The large range 
of 11B nmr chemical shifts for isomer A suggests a 
relatively open structure, possibly consisting of two 
pyramidal (CHs)2C2B4H4 units linked at the edges1213 

(viable localized-bond valence structures based on 
Lipscomb's approach1415 can be written for such a 
species). The simplicity and small range of the 11B 
spectrum of B are consistent with a more compact ico-
sahedral-like cage (Figure 2). Distortion from regular 
icosahedral geometry could occur via cooperative 
stretching of several bonds16 such that a high degree of 
symmetry is preserved, as required by the nmr spectra 
of B. The proposed structure of B is compatible with 
the observed nmr equivalence of the methyl groups at 
+40° , since a fluxional rearrangement involving rela-

(12) The structure proposed13 for (C2B9H1O2, consisting of edge-
bonded C2B9H11 icosahedral fragments, contains hydrogen bridges and 
borons lacking terminal hydrogens; both features are absent in (CHs)4-
C4BsHs. 
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tive twisting of the two (CHs)2C2B4H4 pyramids is read­
ily visualized. 

Compound I reacts readily with Mo(CO)6 in refluxing 
heptane, yielding the first known four-carbon metal-
locarborane system, (CO)3Mo(CHs)4C4B8H8 (II). This 
complex, a dark green, air-stable crystalline solid, has 
been characterized from its mass spectrum (calcd for 
12Cu16Os100Mo11B8

1H21+ (protonated parent ion), 
389.1321; found, 389.1311), the 11B nmr spectrum, 
which contains resonances (J = 162 ± 6 Hz) at 5 —50.9, 
—43.7, —41.0 (asymmetric), and —29.5, with relative 
areas 3:1:2:2, and the 1H nmr spectrum, which exhibits 
methyl peaks of equal area at 5 —1.45, —1.88, —1.99, 
and —2.17. The molecule satisfies the electronic re­
quirements16-20 {In + 2 rule) for a closed 13-vertex 
polyhedron and is electronically analogous to the 
known [(CO)3MoC2B10H12]

 2~ dicarbon system.2 x Since 
a number of possible structures have the total asym­
metry indicated by the nmr spectra, an unambiguous 
assignment must await X-ray studies. 

Compound II and its tungsten analog, similarly pre­
pared, are the first metallocarboranes containing an 
electrically neutral carborane ligand. The ability of I, 
a formal six-electron donor, to function as an acceptor 
of metals may open the way of the preparation of here­
tofore inaccessible metallocarboranes of electron-poor 
transition metals such as vanadium and titanium or of 
metals in unusually low oxidation states. This and 
other implications of the present work are under in­
vestigation. 
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Transition Metal Catalyzed Single Electron Transfer 
in Grignard Reagent Addition to Ketones 

Sir: 

Since 1968 evidence has been accumulating to indi­
cate that Grignard reagent addition to ketones can pro­
ceed through a single electron transfer (SET) mecha­
nism.1 It is felt that the nature of the solvent, ketone, 
R group of the Grignard reagent, purity of magnesium 
used to prepare the Grignard reagent, and mode of 
preparation of the Grignard reagent are all influential 
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